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Abstract 

The least-squares method incorporating the orthonor- 
mal relation between wavefunctions is formulated. 
The method fulfils the idempotency condition and 
allows the representation of wavefunctions to be 
obtained from charge-density distributions measured 
by the X-ray diffraction method. The present method 
can be applied to both the atomic-orbital (AO) and 
the molecular-orbital (MO) models. The scattering- 
factor formalisms are also described for both models. 
One of the most important applications of the present 
method to the AO models is the determination of the 
d wavefunctions in a general crystal field. The restric- 
tions among the coefficients of d wavefunctions in 
the 32 point-group-symmetry fields are derived. The 
effect of expansion and contraction of electron clouds 
in crystal fields is highly important, since it allows 
the possibility of determining all the unknown d 
wavefunctions. Even the wavefunctions of atoms with 
spherical electron configuration like Zn 2÷ and high- 
spin Mn 2÷ ions can be determined when this effect 
is significant. From the scattering factors of two- 
center terms, the temperature factors for these terms 
are derived. 

Introduction 

Charge-density distribution has been extensively 
studied with diffraction methods in the last two 
decades. Charge densities obtained in various 
molecular, ionic and metallic crystals revealed 

0108-7673/88/061002-07503.00 

features of bondings. Quantitative analysis of the 
measured charge-density distributions was carried 
out with electron-population analysis (Stewart, 1969; 
Coppens, Willoughby & Csonka, 1971) and with the 
method of multipole refinement ( Kurki-Suonio, 1968; 
Hirshfeld, 1971; Stewart, 1972; Hansen & 
Coppens, 1978). Multipole refinements showed 
remarkable success in representing charge-density 
distribution in crystals by analytical functions, and 
various electrical physical quantities such as electric 
moments were calculated from them. However, these 
methods failed to give more fundamental quantities 
such as first-order density matrices and the rep- 
resentation of wavefunctions. This is because of the 
lack of conditions imposed by the antisymmetric 
property of wavefunctions. 

Assume that M electrons occupy M molecular spin 
orbitals (MO's) 0; and that each MO is represented 
in terms of a linear combination of N basic functions, 
~0n(r), which are normalized and orthogonalized, as 
follows, 

~bi(r) = c~q~(r), ( i =  1 , 2 , . . . ,  M)  (1) 
or  

O(r) = C~(r) ,  

where C = {ci,} consists of M orthonormal rows c'i. 
0 = { 0~ } and ~o = { ~0, } are M x 1 and N x 1 matrices, 
respectively. A prime means a row vector or a trans- 
posed matrix in the following discussion. M is the 
number of MO's to be determined and is not more 
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than N. ~0n(r) is an atomic orbital or a linear combina- 
tion of atomic orbitals. In the Hartree-Fock scheme 
the necessary and sufficient condition for reducing 
the total wavefunction to a single Slater determinant 
is expressed by the two equations (L6wdin, 1955): 

p2= p, (2) 

tr (P) = M, (3) 

where tr means the diagonal sum and P is a first-order 
density matrix defined as 

P = C*C  (4) 

The N x N matrix P is a Hermitian matrix and from 
(2) P is an idempotent matrix. McWeeny (1960) gave 
the iterative equation 

Pk+~= gP2k--2P 3= Pk (5) 

for the purpose of calculating an idempotent matrix 
from a nearly idempotent one. Clinton, Galli & Massa 
(1969) proposed iterative equations by imposing the 
physically important constraints of (5) in addition to 
that in (3). The X-ray structure-factor constraint was 
introduced by Clinton, Frishberg, Massa & Oldfield 
(1973) to obtain a first-order density matrix from the 
experimental charge density. Tsirel'son, Mestechkin 
& Ozerov (1977) introduced the idempotency 
property (2) in the minimization of the functional 

Q=(1/V,.)Y'.lFobs(S)-Fca,c(S)l 2, (6) 

where Fob~ and Fc.~ are observed and calculated 
structure factors and Vc is the volume of the unit cell. 
S is the scattering vector defined as ISI = (sin 0)/A. 

If the system is described on the basis of wavefunc- 
tions instead of density matrices, the orthonormal 
condition between the wavefunctions, which is 
equivalent to the condition (2) (McWeeny, 1960), 
should be considered. The conventional least-squares 
method does not incorporate the condition (2) as 
pointed out by Frishberg & Massa (1982). The present 
method introduces the constraint of orthonormality 
into the conventional least-squares method. By 
adding the constraint (3), which can be easily done 
even in the conventional least-squares program, the 
least-squares method of the present study ensures the 
Hartree-Fock representability. Therefore the present 
method leads to the direct determination of the rep- 
resentation of wavefunctions by the X-ray diffraction 
method. It is to be noted, however, that the assump- 
tion of the strict validity of the Hartree-Fock approxi- 
mation or a single-Slater-determinant assumption is 
a serious limitation for many transition-metal com- 
plexes and the extension of the present method to 
one which incorporates the method of configuration 
interaction will be necessary. 

The charge-density distributions of transition 
metals in the Oh crystal fields were analyzed using 
the well defined orthonormal wavefunctions by the 

crystal field theory (Kijima, Tanaka & Marumo, 
1982, 1983; Miyata, Tanaka & Marumo, 1983). The 
shift of one electron from the dy orbital to the de 
orbital, that is, the transition from the high-spin state 
to the low-spin state in KCoF3 crystals, for example, 
causes so enormous a change in the deformation 
density maps that the Co 2÷ ion was shown definitely 
to be in the high-spin state. The charge-density distri- 
bution in Jahn-Teller-distorted KCuF3 crystals was 
measured and the 3D wavefunction of Cu 2÷ ions was 
determined, keeping the orthonormal relation 
between the E~ orbitals (Tanaka, Konishi & Marumo, 
1979). The wavefunction of the ds hybridized orbital 
of the Cu ÷ ion in CuAIO2 crystals was also determined 
in the same way (lshiguro, lshizawa, Mizutani, Kato, 
Tanaka & Marumo, 1983). The method proposed in 
the present study was applied to the wavefunction 
analysis of the Cu 2÷ ion in [Cu(diazacyclooctane)2]- 
(NO3) 2. The 3D wavefunction in a crystal field Ci 
was obtained by optimizing the charge-density distri- 
bution. This will be published in a subsequent paper 
(Tanaka & Marumo, 1988). 

Formalism of the least-squares method 
incorporating orthonormality 

A conventional least-squares method in X-ray crystal- 
lography was improved to obtain the representation 
of wavefunctions by taking the orthonormal relation 
between wavefunctions into account. The orthonor- 
mal condition is expressed by 

N N 

Z Z c*,,,cj,, I ¢*~o,, d r =  60, (7) 
r n  n 

where I ¢*q~. d r - s , . ,  is an overlap integral of ¢,. 
and ¢..  6 o equals 1 if i = j  and 0 otherwise. Equation 
(7) is expressed by matrices C, S, I as 

CSC*= I (8) 

where S={s,,,,} is an N x N matrix, ldempotency 
condition (2) still holds in this case (see Appendix). 

In the subsequent discussion, real wavefunctions 
qJi and q~,,, are assumed and Cir,, are taken as real. The 
present formulation can easily be extended to that 
for complex values. By employing Lagrange's 
unknown multiplier method, the value Q to be mini- 
mized in the least-squares method reduces to 

Q = v ' M f ' v -  2 2  A0 c,,,c).s,.,,-3 o , (9) 
• . 
! -'Y:-.] I'l 

where 

v = f - A x ,  (lOa) 

= Fob.~-- F~.~lc}, (lOb) 

A = {a0} = {a Fca,,:/~xj}, (10c) 

x={x j - x ° }={Ax~} ,  (lOd) 
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and My is a variance-covariance matrix. A is a design 
matrix. ~ Fobs and Fcalc are observed and calculated 
structure factors, respectively, x is a P x 1 matrix of 
the shifts of P unknown parameters to be determined 
in the least-squares method. All the notations are the 
same as those given by Hamilton (1964) except those 
of vectors, which are written in bold lower-case letters. 
The second term is linearized by expanding c~,. by 
the small shift Ac,,, 

0 ci,,, = c , , +  Aci,,. (11) 

Putting this into (9) and ignoring the terms higher 
than second order, we have 

M M  N N  
0 Q = v ' M f ' v - E  E A0 E )-'. (ac,,,cj ° + c , , ac j , ) s , , , .  

i<-j  m n 

(12) 

By differentiating with respect to Axj and putting 
A t  t 0 = Asi = (1 + 60)A0/2 , we obtain 

6Q = 2 6 x ' ( A ' M f ~ A x  - A ' M i ~ f )  

M M  N N  

i j m n 

=0.  (13) 

The first term is obtained following the usual pro- 
cedure. In the following discussion we put 

b = A ' M f I A x - A ' M f ' f .  (14) 

For simplicity, M N  small shifts Ac,,, are placed at 
the bottom of  x, and the superscript of o ci~ and the 
prime of A lj are omitted in the following discussion. 
The second term in (13) is further rewritten since 
S t u n  : S n m  , 

M M  N N  

i j m n 

M N 

= Y. Y. 8 (ac i . , ) (ACS) , , .  
i m 

= [8 (ac , ) ' ,  8 ( a c 2 ) ' , . . . ,  8(aCM)']m 

= 6x'n,  (15) 

where A = {A0} is an M x M matrix and m' is a 1 x M N  
matrix with the form 

t m' = (n'l, n~, . . .  , n m ) .  (16) 

Each n~ is a 1 × N matrix defined as 
t n i = [ ( A C S ) , ~ ,  (ACS) ,2 , .  . . ,  (ACS)iN] 

=k[CS .  (17) 

n' is an augmented 1 x P matrix made by adding 
P - M N  zero elements to the top of m', 

! l l l n '=(Oe-MN, n l , n z , . . . , n M ) ,  (18) 

where o~ is a 1 x I zero matrix. From (13) and (15), 

the next equation, 

b=n, (19) 
is obtained. 

In order to calculate k;, we define an operator v,~, 
a 1 x P matrix, as follows. 

I t I t 
vo = (Op-MN+~,-I)N, e s, OmN-,N). (20) 

V,~ operates only on ni if (19) is multiplied by it on 
the left as 

t ¢ v~b = c~n, =cjSC ki. (21) 

Then the operator N~, the P x M matrix, is further 
defined as 

N~ = (vi,, VIE,. . . ,  VIM). (22) 

Equation (19) is multiplied on the left by Ni and ki 
is obtained by using (17) and the orthonormal condi- 
tion (8), 

Nib = CSC'k i  = ki. (23) 

To satisfy the condition A 0 = Aji, we further put 

k, = ½M~b, (24) 

' is a P x M matrix defined as where M; 

M ~ = ( V i l + V l i ,  V ,E+V2i , . . . , v im+VMi) .  (25) 

Putting ki into (17), we get 

ni = Rib, (26) 

where Ri is an N × P matrix and has the form 

Ri I t = ~SC M~. (27) 

From (19) and (26), the next equation is obtained: 

b=Rb, (28) 

where R' is a P x P matrix with elements 
i ? 

R =(Op.p-MN, R ' ~ , R ' 2 , . . . , R m ) ,  (29) 

where Op.P-MN is a P x ( P - M N )  zero matrix. The 
explicit form of the normal equation is obtained from 
(14) and (28) as 

( I - R ) ( A ' M f ' A x - A ' M ~ ' f ) = O .  (30) 

This is different from the normal equation of the 
least-squares method having no condition of 
orthonormality in the existence of R. Matrix I - R  
acts as an ill-condition modifier of the matrix 
A ' M i ~ A ,  the inverse matrix of which cannot be calcu- 
lated because of severe parameter interaction. 

Error in x is formulated in the following way. From 
(30), x is evaluated as 

~ =  {(I - R ) A ' M ; ~ A } - ~ (  I - R ) A ' M ; ~ f  

= C - ~ D A ' M / ~ f  (31) 

where 

C = ( I - r ) A ' M f ' A  = D A ' M  i '  A, 

D = I - R .  

(32a) 

(32b) 
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Then the variance-covariance matrix of x is given by 

Mx = e { ( 9 - x ) ( ~ - x )  ' } 

= e { C - ~ D A ' M / ~ ( f - f ° ) ( f - f ° ) ' ( C - ~ D A ' M i ~ )  '} 

= C- '  D A ' M i ~ e { ( f - f ° ) ( f - f o ) ' } M i l A D ' C  '-~ 
(33) 

where e{A} means an expected value of A. By 
definition 

e { ( f - f ° ) ( f -  f°)'} = M s. (34) 

Then M~ is finally obtained as 

M~ = C-I D A ' M ~ i A D ' C  '-I 

= D ' C  '-I. (35) 

Evaluation of the scattering expressions 

1. The d wavefunctions in a general crystal field and 
their scattering factors 

If overlap density is ignored, d wavefunctions in 
a crystal field are generally expressed in terms of five 
basis functions. In this case, the parameter K which 
represents the expansion (K < 1) and contraction 
(K > 1) of electron clouds in crystals is introduced. 
By replacing MO in (1) with AO Oi, (1) is rewritten as 

5 

~,(K,r)= }-" C,,,,(p,,(K~r). (36) 
m = l  

The values of K~ of symmetrically equivalent AO's or 
degenerate AO's should be the same. The parameter 
K was first introduced by Coppens, Guru Row, Leung, 
Stevens, Becker & Yang (1979). In the present study 
K is assigned for each AO. The least-squares method 
described in the previous section needs a minor 
modification accompanying the introduction of K. 
Since the normalization constant K 3/2 is necessary for 
each q~(Kr) and since the overlap density is ignored, 
the orthonormal condition (8) is modified to 

(KiK j ) 3 / 2  2 CimCjm = ~ij. ( 3 7 )  
nl 

Therefore by rewriting K3/2c,. as c,. and taking S as 
I, we can apply the procedure in the previous section 
to the d-wavefunction analysis. 

d wavefunctions in higher point-group symmetries 
have no off-diagonal components of ci,, and it is not 
necessary to determine the coefficients c,.. However, 
for the other symmetry fields, mixing of basic orbitals 
is permitted and the analysis of d wavefunctions or 
determination of the coefficients c,, becomes 
necessary. The relationship among coefficients c,, in 
crystal fields of various symmetries is listed in Table 
1. Real wavefunctions of dy=, d~,,, dxy, dx2-y "- and d~2 
orbitals are taken as the basic functions, d wavefunc- 
tions in 1, 1, 2, m, 2/m, 3, 3, 32, 3m and 3m crystal 
fields as well as those in the other crystal fields can 

now be determined by the present method. It was 
derived for the point-charge model described by 
Kamimura, Sugano & Tanabe (1969) by taking the 
crystal-field potential energy uc as a perturbation and 
by expanding it with spherical harmonics. The secular 
equation was also calculated for each point-group 
symmetry. The relationship among ci,,'s in Table 1 
was derived from the relationship among the com- 
ponents of the secular equation. The restrictions of 
the coefficients of multipoles for d electrons were 
derived by Holladay, Leung & Coppens (1983). The 
transformation of a set of degenerate orbitals by a 
unitary matrix U changes neither the charge density 
nor the energy levels, that is, 

p(r)=(Ud))+(Ud~)=d/+(U+U)d~=e+~. (38) 

Therefore the other choice of restrictions of c,. 's is 
also possible for degenerate orbitals. The restrictions 
in Table 1 are the limiting case to fix the relations to 
representative ones. 

The scattering factor f~ of an electron in the ith 
orbital is expressed as 

f~(S/K,) = ~ ~b,(x,r) exp (2rriS.r)6,(K,r) dr 

= E  E c,,,c,,fm,(S/K,), (39) 
rn n 

where 

fm, (S /K, )= ~ q~,.,(K,r) exp (27riS.r)q~,(K,r) dr. 
(40) 

f, . ,(S) is calculated after Weiss & Freeman (1959) 
and Iwata (1977). The explicit form off , , . (S)  is listed 
in Table 2. The scattering factor of all the d electrons 
of the transition metal is therefore 

5 

f3d(S) = E p~(S/K,) 
i = l  

= 2 p ,  E E  c,,.c,,,f.,,,, (41) 
i m n 

where p~ is the occupation number of electrons in the 
ith orbital. Since the X-ray diffraction method cannot 
differentiate between the up and down spin orbitals 
unless the exchange effect is so significant that the 
electron density is deformed by the effect, and since 
the total wavefunction is assumed to be represented 
by the single Slater determinant, p~ is assumed to take 
integer values between 0 and 2. If all the values of Ki 
are the same, this is further rewritten using the 
property of the unitary matrix C as 

f 3 d ( S )  = P 2 f m m  + 2 ~, 2 (p~ip)c, ,c~. f , , . ,  
m i m n 

(42) 

where p is an arbitrary number. The first term comes 
from spherical charge distribution and the second 
one from aspherical distribution. Equation (42) shows 
the possibility of reducing the number of the 
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Table  1. Allowed values and the relationship of the coefficients C~r,, 

For definition of  q , , ,  see equat ion (36). Basic functions ~ to ¢s are those of  d,z, d ~ ,  d~y, dx2_y2 , d? orbitals,  respectively. Coefficients 
c~m of  each AO are summarized in parentheses and degenerate  AO's  are listed in braces. The quantizat ion axis zq is taken first along 
the main axis and then Xq and yq are taken along twofold  axes or perpendicular  to mirror planes. 

Point group 

1 
i 

2 

2/m 

222 
mm2 
m m m  

3 

32(x#)* 
3_m(x~)* 
3m(xq)* 

4 

4/m 

422 
4ram 
42m 
4/mmm 

6 

6/m 
622 
6ram 
6m2 
6/mmm 

23 
m3 
432 
43m 
m3m 

Allowed values of  c~,, Restrictions of  q, ,  Restrictions of  K, 

All q,. 

(c,,, c,2), (c2,, c22), 
(c33, c34, c35), (c4~, c44, c4s), 
(cs3, c~4, c5~) 

(c,t), (c22), (c~3), 
(c44, c4s), 
(cs4, c55) 

{(ell, ct3, q4), (C.,2, ~3, C2,)}, 
{(C31,  £'33, C34),  (C42,  C43, C44)}* 
(css) 

{(c,~, q3), (c22, c2.4)}, 
{(C31,  C33) ,  (C42,  C~.4)}, 
(qs) 

{(ql), (c22)}, 
(c33, c34), 
(C43 , C44) ,  
(c55) 

{(c,,), (c22)}, 
(c33), (c~,), 
(qs) 

{(Cl I ), (C22)}, 
{(c33), (c,4)}, 
(c55) 

£'54 = C4S , C55 = --C,~ t 

~22 = C l l ,  C23 = Cl4 ,  C24 = - -CI3  KI = K2 

C42 = £'31 , C43 = £'34 , C44 = --C33 K 3 = K 4 

£'22 = - - e l l  , £'24 : Cl3 KI  = K 2 

C31 = C13,  £'33 = - - e l  I ,  C42 = C13,  C44 ~ CI I K3  = K4  

C43 = C34,  C4a = --£'33 

{(c,i ), (c22), (c33)}, 
{(c,~), (c~5)} 

* The twofold axis or the mirror is parallel or perpendicular to quantization axis x~. 

K I = K 2 

K I ~ K 2 

K I = K 2 

K3=  K 4 

K |  = K 2 = K 3 

K 4 ~ K 5 

Table  2. Basic scattering factors for d electrons 

f , . .  is expressed by the polar  coordinates  (/3, 3') o f  the scattering vector on the or thogonal  quantum axis system, 

f , . .  = (Jo)+ {Ao(2 cos 2/3 - s i n  2 fl) + Ai sin/3 cos/3 + A 2 sin 2/3}(J2) 

+ { Bo(35 cos 4/3 - 30 cos 2/3 + 3) + B I sin fl cos/3 (7 cos 2/3 - 3) + B 2 sin 2/3(7 cos 2/3 - 1 ) 

+ B 3 sin 3/3 cos/3 + B4 sin 4/3}(J4). 

c and s in the columns A.  and B. represent cos (ny)  and sin (n~/), respectively. 

fro. Ao 
f,.:.~.: -5/14 
f y z . z x  

f.~ z .x )  

JT~z.x2- y 2 

) z . z  2 

L ...... -5/14 
f z~ .  ,c 7 
f zx ,  x 2_ ~ 2 

f z x . z  

f,,.x~ 517 
x v . x 2 - y  2 

~y.z 2 

[2_ 2. 2_ 2 5/7 
. ~ 2  v2z2  

f_2.:2 -5 /7  

Ai A2 Bo BI B2 
15c/14 -3/14 -15c/14 
15s/14 -15s/14 

-15c/7 -15c/28 
-15s/7 -15s/28 

751/2s/7 -675t/2s/14 

-15c/14 -3/14 15c/14 
15s/7 15s/28 

-15c/7 -15c/28 
-751/2c/7 6751/2c/14 

3/56 

-75t/2s/7 -675t/2 s/28 

3/56 
75'/2c/7 675'/2c/28 

9/28 

B3 

-15c/4 
-15s/4 

-15s/4 
15c/4 

B4 

-15c/8 
-15s/8 

15c/8 
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parameters to be determined.  If for example  we con- 
sider the Cu 2÷ ion (d 9) and if we can put p~ = 1, p = 
P2 = P3 = P4 = P5 = 2, then (42) becomes 

f3d(S) = 2 ~fm,, , - -E ~ ClmClnfmn" (43) 
m m i'1 

This means  that only the coefficients of  the hole 
orbital 0~ can be determined by X-ray diffraction. 
However, the values of  Ki are not the same unless the 
symmetry requires identical Ki values or the orbitals 
are degenerate. Therefore (41) is to be used basical ly 
for the wavefunct ion analysis though the situation 
shown in (42) and (43) should be kept in mind.  
Natural ly the orbitals which can be determined even 
if  all the K values are the same are expected to be 
determined more easily than the others. Re- 
orthogonalizat ion of wavefunctions after each cycle 
of refinement was done using the L/Swdin (1950) 
method in the present study, which treats all the 
orbitals with equal weight. The generalized method 
of orthogonalizat ion by Kashiwagi & Sasaki (1973) 
which treats each orbital with proper weight can 
possibly be used for this case. 

2. Scattering expression for molecular-orbital models 

2.1. Two-center scattering factors. In MO models,  
basic functions ~,, in (1) are symmetry orbitals and 
may be conveniently expressed by a l inear combina-  
tion of atomic orbitals, 

~m(r) = ~ aj(r)~,,o(r-rj), (44) 
J 

where rj is the atomic position of the j t h  atom. 
Har t ree-Fock atomic orbitals expanded by Gaussian-  
type orbitals (GTO's)  (see, for example,  Huzinaga,  
1984) may be employed for the following calculation: 

q~j(r) = ~ bjkxjk(ak; r), (45) 
k 

Xjk and Xj'k', and 

G, = exp [-akak.(A--B)2/y] 
I+l, mj+mj, n,+nj, 

x E E E ft(lj, lj',(--A-fi)x,(BI3),,) 
I = 0  m = 0  n = 0  

x f, ,(mj, m/, (AlS)y, (-B-P)y) 

x f , (n j ,  nj,, (AP)z, (B-ff)~) (48a) 

G2 = exp [ - (2zrS)2/4y](zr /3 , )3 /2( i /2yl /2)  l÷"÷" 

x Hi(rtSx/y'/2) H,,,(TrSv / y'/2) H,,( zrSzl y,/2) 

(48b) 

where 3' = ak + ak'. P is a point  on the bond between 
j th  and j ' t h  atoms and is defined by 

AI  j= ak,AB/ ( ak + ak'). (49) 

The relat ionships of these vectors are il lustrated in 
Fig. 1. For the other notations readers should consult  
the paper  by Taketa et al. (1966). It is to be noted 
that the term exp [2rriS.P] in (47) is a phase factor 
for the product  of  Xik and X/k'. 

2.2. Temperature factors for two-center terms. Since 
X-ray structure-factor formal ism is based on the 
assumption of independent  atoms in the crystal, the 
treatment of  thermal  smearing of the two-center terms 
has been a very serious problem. However, the tem- 
perature factor for the two-center terms can be derived 
approximate ly  from the phase factor in (47). The 
point P vibrates as the atoms at the points A and B 
vibrate. Therefore the thermal  smearing of  the two- 
center term is introduced based on the assumptions:  
(a) that j and j '  atoms vibrate independent ly ,  and 
(b) that the two-center term vibrates as the point  P. 
The time average of the phase factor is calculated as 

(exp [27riS.P]) = (exp [2"n'iS.(akrj + Otk,rj,)/3/]) 

= exp [ 2 7riS. (ak r ° + ak,r °,) / y ] 

T%./ ~' x T'~ ~/ ' . j ,  , (50) 

where Xjk is a GTO and the suffix m of ~,,j in (44) is 
dropped for the convenience of simplicity. Since the 
scattering factor for MO 0i is a Fourier t ransform of 
0"~, ,  it involves the Fourier  t ransform of a product,  

fj/kk'(S) = ~ Xjk(r-rj)Xj,k,(r-rj,)exp (2rriS.r) dr. 
- o o  

(46) 

Two-center scattering factors f~'kk' of second-row 
atoms were derived using GTO's  by McWeeny (1953) 
and Stewart (1969). For a general case, the method 
of  Taketa, Huzinaga & O-ohata (1966) is used and 
we obtain 

fj/gk'(S) : NjkN/k,GiG2exp[2rriS.P], (47) 

where N~k and N~,k, are normalizat ion constants of  

r A 

A 

r 

0 

Fig. 1. Schematic drawing illustrating the relationships of vectors 
used in the calculation of the two-center scattering factor 
between the jth and the j'th atoms at A and B. Vectors r, r j, r r 
and P are those from the origin O to R, A, B and P, respectively. 
Vectors to R from A, B and P are rA, rs and rp, respectively. 



1008 X-RAY ANALYSIS  OF W A V E F U N C T I O N S .  I 

where uj and u j, are the displacement  vectors of  j t h  
and j ' th  atoms from their equivalent  positions r ° and 
ry,° respectively. ( ) means  the average value. Tj and 
Tj, are 

Tj = (exp [ 2 rriS.uj ]) (51 a) 

Tj, = (exp [ 2-n-iS.uf ]), (51 b) 

and Tj and Tj, are by definit ion the temperature factors 
of  the j t h  and j ' t h  atoms. The temperature factor for 
the two-center term is derived on the two assumpt ions  
ment ioned earlier. The independent -a tom assump- 
tion is not a good assumpt ion  for the term of the 
GTO's  with a bond between them. The assump- 
tion (b) is much  more stringent than the Born- 
Oppenhe imer  approximat ion.  Thus the present for- 
mal ism of  a two-center temperature factor needs 
experimental  tests and may possibly be improved 
based on the detai led study of  the interaction of the 
two atomic motions. However,  the present equat ion 
is expected to be appl icable  to the actual analysis  as 
a first approximat ion  since the effect of  the two-center 
terms on the structure factors is small. 
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A P P E N D I X  

If the or thonormal  condi t ion in (8) is fulfilled, the 
idempotent  matrix P can be obtained in the fol lowing 
way. Since S is a Hermit ian matrix, it can be brought  
to the diagonal  form S by some unitary matrix U as 

S = U * S U .  (A1) 

Therefore S is expressed as 

S =  U S U * :  U Q I Q I U * : S ' / 2 S  *'/2, (A2) 

where (~1 is a diagonal  matrix so defined that the 

square of  each of  the diagonal  elements is equal  to 
the corresponding diagonal  element of,q. By replacing 
C S  ~/2 with T, we get from (8) and (A2) 

TT*= L (A3) 

Then the matrix P is defined as 

P = T* T. (A4) 

From the relation (T*)0=  (T)* ,  P is easily shown to 
be a Hermit ian  matrix and from (A3) 

p 2 =  T * T ( T * T )  = T * I T =  P. (A5) 

Therefore P is an idempotent  matrix. 
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